Chemical Engineering Fluid Mechanics Darby Solution Manual

Chemical Engineering Fluid Mechanics Darby Solution Manual | b5d9051b20f1ad5608dc13927120142a

Chemical Engineering: Physical and Chemical Equilibrium for Chemical Engineers

The Flow of Complex Mixtures in Pipes

Computational Methods in Chemical Engineering

Diffusion

Computational Fluid Dynamics

Small Teaching Online Fluid Mechanics for Chemical Engineers

Chemical Reaction Engineering

Fluid Mechanics for Chemical Engineers

Practical Aspects of Chemical Engineering

Analysis, Synthesis, and Design of Chemical Processes

Transport Phenomena and Unit Operations

Solved Practical Problems in Fluid Mechanics

Biochemical Engineering, Second Edition

Principles of Chemical Engineering

Process Engineering

Fluid Mechanics

Bioprocess Engineering

Numerical Methods in Chemical Engineering

Process Equipment Foundations of Engineering

Introduction to Granular Flow

The third edition of Engineering Flow and Heat Exchange is the most practical textbook available on the design of heat transfer and equipment. This book is an excellent introduction to real-world applications for advanced undergraduates and an indispensable reference for professionals. The book includes comprehensive chapters on the different types and classifications of fluids, how to analyze fluids, and where a particular fluid fits into a broader picture. This book includes various a wide variety of problems and solutions - some whimsical and others directly from industrial applications. Numerous practical examples of heat transfer Different from other introductory books on fluids Clearly written, simple to understand, written for students to absorb material quickly Discusses non-Newtonian as well as Newtonian fluids Covers the entire field concisely Solutions manual with worked examples and solutions provided

The Chemical Engineer's Practical Guide to Fluid Mechanics: Now Includes COMSOL Multiphysics

Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need mastery of fluid mechanics. Such knowledge is especially valuable in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries. Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL

Multiphysics 5, Third Edition, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on the book that earned Choice Magazine's Outstanding Academic Title award, this edition also gives a comprehensive introduction to the popular COMSOL Multiphysics 5 software. This third edition contains extensive coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using COMSOL Multiphysics 5 and ANSYS Fluent. The chapter on turbulence now presents valuable CFD techniques to investigate practical situations such as turbulent mixing and recirculating flows. Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws; and fundamental principles of flow through equipment. Part II turns to microscopic fluid mechanics: Differential equations of fluid mechanics Viscous-flow problems, some including polymer processing Laplace's equation; irrotational and porous-media flows Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications Turbulent flows, showing how the k-ε method extends conventional mixing-length theory Bubble motion, two-phase flow, and fluidization Non-Newtonian fluids, including inelastic and viscoelastic fluids Microfluidics and electrokinetic flow effects, including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching Computational fluid mechanics with ANSYS Fluent and COMSOL Multiphysics

Nearly 100 completely worked practical examples include 12 new COMSOL 5 examples: boundary layer flow, non-Newtonian flow, jet flow, die flow, lubrication, momentum diffusion, turbulent flow, and others. More than 300 end-of-chapter problems of varying complexity are presented, including several from University of Cambridge exams. The author covers all material needed for the fluid mechanics portion of the professional engineer's exam. The author's website (fmche.engin.umich.edu) provides additional notes, problem-solving tips, and errata. Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.

This book presents Maple solutions to a wide range of problems relevant to chemical engineers and others. Many of these solutions use Maple's symbolic capability to help bridge the gap between analytical and numerical solutions. The readers are strongly encouraged to refer to the references included in the book for a better understanding of the physics involved, and for the mathematical analysis. This book was written for a senior undergraduate or a first year graduate student course in chemical engineering.
engineering. Most of the examples in this book were done in Maple 10. However, the codes should run in the most recent version of Maple. We strongly encourage the readers to use the classic worksheet (*.mws) option in Maple as we believe it is more user-friendly and robust. In chapter one you will find an introduction to Maple which includes simple basics as a convenience for the reader such as plotting, solving linear and nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and ‘while loop.’ Chapter two presents linear ordinary differential equations in section 1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs using the matrix exponential and Laplace transform method. In section two of chapter two, nonlinear ordinary differential equations are presented and include simultaneous series solutions, solving nonlinear ODEs with Maple’s ‘dsolve’ command, stop conditions, differential algebraic equations, and steady state solutions. Chapter three addresses boundary value problems. This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples. Find out how to apply learning science in online classes. The concept of small teaching is simple: small and strategic changes have enormous power to improve student learning. Instructors face unique and specific challenges when teaching an online course. This book offers small teaching strategies that will positively impact the online classroom. This book outlines practical and feasible applications of theoretical principles to help your online students learn. It includes current best practices around educational technologies, strategies to build community and collaboration, and minor changes you can make in your online teaching practice, small but impactful adjustments that result in significant learning gains. • Explains how you can support your online students • Helps your students find success in this non-traditional learning environment • Covers online and blended learning • Addresses specific challenges that online instructors face in higher education Small Teaching Online presents research-based teaching techniques from an online instructional design expert and the bestselling author of Small Teaching. Completely revised and updated to reflect the current IUPAC standards, this second edition is enlarged by five new chapters dealing with the assessment of energy potential, physical unit operations, emergency pressure relief, the reliability of risk reducing measures, and process safety and process development. Clearly structured in four parts, the first provides a general introduction and presents the theoretical, methodological and experimental aspects of thermal risk assessment. Part II is devoted to desired reactions and techniques allowing reactions to be mastered on an industrial scale, while the third part deals with secondary reactions, their characterization, and techniques to avoid triggering them. Due to the inclusion of new content and restructuring measures, the technical aspects of risk reduction are highlighted in the new section that constitutes the final part. Each chapter begins with a case history illustrating the topic in question, presenting lessons learned from the incident. Numerous examples taken from industrial practice are analyzed, and each chapter concludes with a series of exercises or case studies, allowing readers to check their understanding of the subject matter. Finally, additional control questions have been added and solutions to the exercises and problems can now be found. Comprehensive and practical guide to the selection and design of a wide range of chemical process equipment. Emphasis is placed on real-world process design and performance of equipment. Provides examples of successful applications, with numerous drawings, graphs, and tables to show the functioning and performance of the equipment. Equipment rating forms and manufacturers’ questionnaires are collected to illustrate the data essential to process design. Includes a chapter on equipment cost and addresses economic concerns. • Practical guide to the selection and design of a wide range of chemical process equipment. Examples of successful, real-world applications are provided. • Fully revised and updated with valuable shortcut methods, rules of thumb, and equipment rating forms and manufacturers’ questionnaires have been collected to demonstrate the design process. Many line drawings, graphs, and tables illustrate performance data. • Chapter 19 has been expanded to cover new information on membrane separation. Approximately 100 worked examples are included. End of chapter references also are provided. The Leading Integrated Chemical Process Design Guide: With Extensive Coverage of Equipment Design and Other Key Topics More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Fifth Edition, presents design as a creative process that integrates the big-picture and small details, and knows which to stress when and why. Realistic from start to finish, it moves readers beyond classroom exercises into open-ended, real-world problem solving. The authors introduce up-to-date, integrated techniques ranging from finance to operations, and new plant design to existing process optimization. The fifth edition includes updated safety and ethics resources and economic factors indices, as well as an extensive, new section focused on process equipment design and performance, covering equipment design for common unit operations, such as fluid flow, heat transfer, separations, reactors, and more. Conceptualization and analysis: process diagrams, configurations, batch processing, product design, and analyzing existing processes. Economic analysis: estimating fixed capital investment and manufacturing costs, measuring process profitability, and more. Synthesis and optimization: process simulation, thermodynamic models, separation operations, heat integration, steady-state and dynamic process simulators, and process regulation. Chemical equipment design and performance: a full section of expanded and revamped coverage of designing process equipment and evaluating the performance of current...
equipment Advanced steady-state simulation: goals, models, solution strategies, and sensitivity and optimization results Dynamic simulation: goals, development, solution methods, algorithms, and solvers Societal impacts: ethics, professionalism, health, safety, environmental issues, and green engineering Interpersonal and communication skills: working in teams, communicating effectively, and writing better reports This text draws on a combined 55 years of innovative instruction at West Virginia University (WVU) and the University of Nevada, Reno. It includes suggested curricula for one- and two-semester design courses, case studies, projects, equipment cost data, and extensive preliminary design information for jump-starting more detailed analyses. An applications-oriented introduction to process fluid mechanics. Provides an orderly treatment of the essentials of both the macro and micro problems of fluid mechanics. This book describes theories for granular flow based on continuum models and alternative discrete models. Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics. Explains how fundamental principles underlying the behaviour of fluids are applied systematically to the solution of practical engineering problems. Current information and state-of-the-art analytical methods are offered, and the work provides early coverage of dimensional analysis and scale-up. The latest advances in process monitoring, data analysis, and control systems are increasingly useful for maintaining the safety, flexibility, and environmental compliance of industrial manufacturing operations. Focusing on continuous, multivariate processes, Chemical Process Performance Evaluation introduces statistical methods and modeling techniques for process monitoring, performance evaluation, and fault diagnosis. This book introduces practical multivariate statistical methods and empirical modeling development techniques, such as principal components regression, partial least squares regression, input-output modeling, state-space modeling, and modeling process signals for trend analysis. Then the authors examine fault diagnosis techniques based on episodes, hidden Markov models, contribution plots, discriminant analysis, and support vector machines. They address controller process evaluation and sensor failure detection, including methods for differentiating between sensor failures and process upset. The book concludes with an extensive discussion on the use of data analysis techniques for the special case of web and sheet processes. Case studies illustrate the implementation of methods presented throughout the book. Emphasizing the balance between practice and theory, Chemical Process Performance Evaluation is an excellent tool for comparing alternative techniques for process monitoring, signal modeling, and process diagnosis. The unique integration of process and controller monitoring and fault diagnosis facilitates the practical implementation of unified and automated monitoring and diagnosis technologies. This book gives freshman engineering students a solid foundation for all their future coursework. It provides an overview to the engineering profession and of the skills they will need to develop, as well as an introduction to fundamental engineering topics such as thermodynamics, rate processes, and Newton's laws. An important aspect of the book's approach is the method of Engineering Accounting, which casts the basic conservation laws (e.g., of energy or mass) as simple "accounting" procedures. This is a unifying concept that facilitates problem-solving across all engineering disciplines. The subject of transport phenomena has long been thoroughly and expertly addressed on the graduate and theoretical levels. Now Transport Phenomena and Unit Operations: A Combined Approach endeavors not only to introduce the fundamentals of the discipline to a broader, undergraduate-level audience but also to apply itself to the concerns of practicing engineers as they design, analyze, and construct industrial equipment. Richard Griskey's innovative text combines the often separated but intimately related disciplines of transport phenomena and unit operations into one cohesive treatment. While the latter was an academic precursor to the former, undergraduate students are often exposed to one at the expense of the other. Transport Phenomena and Unit Operations bridges the gap between theory and practice, with a focus on advancing the concept of the engineer as practitioner. Chapters in this comprehensive volume include: Transport Processes and Coefficients Frictional Flow in Conduits Free and Forced Convective Heat Transfer Heat Exchangers Mass Transfer; Molecular Diffusion Equilibrium Staged Operations Mechanical Separations Each chapter contains a set of comprehensive problem sets with real-world quantitative data, affording students the opportunity to test their knowledge in practical situations. Transport Phenomena and Unit Operations is an ideal text for undergraduate engineering students as well as for engineering professionals. Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows. Completely revised and expanded, this second edition covers macroscopic momentum and heat/mass transfer from a single rigid or fluid particle or ensembles of particles involving strong inter-particle interactions including packed beds, fluidized beds, and porous media with different types of non-Newtonian fluids. It reflects advances made since the publication of the previous, bestselling edition with new material on topics such as extensional flow; time-independent, time-
dependent and visco-elastic fluids; free settling behavior of non-spherical particles; and particle motion in visco-elastic and visco-plastic fluids, boundary layer flows, flows in porous media, and falling object rheometry. An excellent reference and handbook dealing with the technological aspects of non-Newtonian materials encountered in nature and in technology, this book highlights qualitative differences between the response of a Newtonian and non-Newtonian fluids in the complex flows encountered in processing applications. This book provides step-by-step guidance on how to design VLSI systems using Verilog. It shows the way to design systems that are device, vendor and technology independent. Coverage presents new material and theory as well as synthesis of recent work with complete Project Designs using industry standard CAD tools and FPGA boards. The reader is taken step by step through different designs, from implementing a single digital gate to a massive design consuming well over 100,000 gates. All the design codes developed in this book are Register Transfer Level (RTL) compliant and can be readily used or amended to suit new projects. This overview of diffusion and separation processes brings unsurpassed, engaging clarity to this complex topic. Diffusion is a key part of the undergraduate chemical engineering curriculum and at the core of understanding chemical purification and reaction engineering. This spontaneous mixing process is also central to our daily lives, with importance in phenomena as diverse as the dispersal of pollutants to digestion in the small intestine. For students, Diffusion goes from the basics of mass transfer and diffusion itself, with strong support through worked examples and a range of student questions. It also takes the reader right through to the cutting edge of our understanding, and the new examples in this third edition will appeal to professional scientists and engineers. Retaining the trademark enthusiastic style, the broad coverage now extends to biology and medicine. Fluid Mechanics for Chemical Engineers, Second Edition, with M. I. C. Fluids, and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances. This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows. This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such as the Differential Adsorption Bed (DAB), the time lag, the diffusion cell, chromatography, and the batch adsorber methods are also covered by the book. It can be used by lecturers and engineers who wish to carry out research in adsorption. A number of programming codes written in Matlab language are included so that readers can use them directly to better understand the behavior of single and multicomponent adsorption systems. The emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt to teach aspects of engineering applicable to process design to biotechnologists. This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems. * * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists * Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems * Comprehensive, single-authored * 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems * 13 chapters, organized according to engineering sub-disciplines, are grouped in four sections: - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors * Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading * Includes useful appendices, detailing conversion factors, physical
and chemical property data, steam tables, mathematical rules, and a list of symbols used. Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels. This is a collection of problems and solutions in fluid mechanics for students of all engineering disciplines. This text is intended to support undergraduate courses and be useful to academic tutors in supervising design projects.

This work covers reaction engineering, both chemical and biochemical, together with measurement and process control. Topics include: chemical reactor design; micro-organism and enzyme catalysis; engineering principles of biochemical reactors; and the principles and applications of process control. Combining comprehensive theoretical and empirical perspectives into a clearly organized text, Chemical Engineering Fluid Mechanics, Second Edition discusses the principal behavioral concepts of fluids and the basic methods of analysis for resolving a variety of engineering situations. Drawing on the author's 35 years of experience, the book covers real-world engineering problems and concerns of performance, equipment operation, sizing, and selection from the viewpoint of a process engineer. It supplies over 1500 end-of-chapter problems, examples, equations, literature references, illustrations, and tables to reinforce essential concepts. Principles of Chemical Engineering Processes: Material and Energy Balances introduces the basic principles and calculation techniques used in the field of chemical engineering, providing a solid understanding of the fundamentals of the application of material and energy balances. Packed with illustrative examples and case studies, this book: Discusses problems in material and energy balances related to chemical reactors Explains the concepts of dimensions, units, psychrometry, steam properties, and conservation of mass and energy Demonstrates how MATLAB® and Simulink® can be used to solve complicated problems of material and energy balances Shows how to solve steady-state and transient mass and energy balance problems involving multiple-unit processes and recycle, bypass, and purge streams Develops quantitative problem-solving skills, specifically the ability to think quantitatively (including numbers and units), the ability to translate words into diagrams and mathematical expressions, the ability to use common sense to interpret vague and ambiguous language in problem statements, and the ability to make judicious use of approximations and reasonable assumptions to simplify problems. This Second Edition has been updated based upon feedback from professors and students. It features a new chapter related to single- and multiphase systems and contains additional solved examples and homework problems. Educational software, downloadable exercises, and a solutions manual are available with qualifying course adoption. Part I: Process design -- Introduction to design -- Process flowsheet development -- Utilities and energy efficient design -- Process simulation -- Instrumentation and process control -- Materials of construction -- Capital cost estimating -- Estimating revenues and production costs -- Economic evaluation of projects -- Safety and loss prevention -- General site considerations -- Optimization in design -- Part II: Plant design -- Equipment selection, specification and design -- Design of pressure vessels -- Design of reactors and mixers -- Separation of fluids -- Separation columns (distillation, absorption and extraction) -- Specification and design of solids-handling equipment -- Heat transfer equipment -- Transport and storage of fluids Suitable for undergraduates, postgraduates and professionals, this is a comprehensive text on physical and chemical equilibria. De Nevers is also the author of Fluid Mechanics for Chemical Engineers. Filling a longstanding gap for graduate courses in the field, Chemical Reaction Engineering: Beyond the Fundamentals covers basic concepts as well as complexities of chemical reaction engineering, including novel techniques for process intensification. The book is divided into three parts: Fundamentals Revisited, Building on Fundamentals, and Beyond the Fundamentals. Part I: Fundamentals Revisited reviews the salient features of an undergraduate course, introducing concepts essential to reactor design, such as mixing, unsteady-state operations, multiple steady states, and complex reactions. Part II: Building on Fundamentals is devoted to "skill building," particularly in the area of catalysis and catalytic reactions. It covers chemical thermodynamics, emphasizing the thermodynamics of adsorption and complex reactions; the fundamentals of chemical kinetics, with special emphasis on microkinetic analysis; and heat and mass transfer effects in catalysis, including transport between phases, transfer across interfaces, and effects of external heat and mass transfer. It also contains a chapter that provides readers with tools for making accurate kinetic measurements and analyzing the data obtained. Part III: Beyond the Fundamentals presents material not commonly covered in textbooks, addressing aspects of reactors involving more than one phase. It discusses solid catalyzed fluid-phase reactions in fixed-bed and fluidized-bed reactors, gas-solid noncatalytic reactions, reactions involving at least one liquid phase (gas-liquid and liquid-liquid), and multiphase reactions. This section also describes membrane-assisted reactor engineering, combo reactors, homogeneous catalysis, and phase-transfer catalysis. The final chapter provides a perspective on future trends in reaction engineering. This work provides comprehensive coverage of modern biochemical engineering, detailing the basic concepts underlying the behaviour of bioprocesses as well as advances in bioprocess and biochemical engineering science. It includes discussions of topics such as enzyme kinetics and biocatalysis, microbial growth and product formation, bioreactor design, transport in bioreactors, bioproduct recovery and bioprocess economics and design. A solutions manual is available to instructors only. Contains Fluid Flow Topics Relevant to Every Engineer Based on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches that taking greater advantage of powerful
computing capabilities over the last several years, the development of fundamental information and new models
has led to major advances in nearly every aspect of chemical engineering. Albright's Chemical Engineering
Handbook represents a reliable source of updated methods, applications, and fundamental concepts that will
continue to play a significant role in driving new research and improving plant design and operations. Well-
rounded, concise, and practical by design, this handbook collects valuable insight from an exceptional diversity of
leaders in their respective specialties. Each chapter provides a clear review of basic information, case examples,
and references to additional, more in-depth information. They explain essential principles, calculations, and issues
relating to topics including reaction engineering, process control and design, waste disposal, and electrochemical
and biochemical engineering. The final chapters cover aspects of patents and intellectual property, practical
communication, and ethical considerations that are most relevant to engineers. From fundamentals to plant
operations, Albright's Chemical Engineering Handbook offers a thorough, yet succinct guide to day-to-day
methods and calculations used in chemical engineering applications. This handbook will serve the needs of
practicing professionals as well as students preparing to enter the field. This book provides readers with the most
current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs
today in the chemical and related industries, in addition to a fundamental understanding of these applications
based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the
ewdition includes many more examples. This book focuses on Chemical Engineering and Processing, covering
interdisciplinary innovation technologies and sciences closely related to chemical engineering, such as computer
image analysis, modelling and IT. The book presents interdisciplinary aspects of chemical and biochemical
engineering interconnected with process system engineering, process safety and computer
science. Hydrodynamics, Mass and Heat Transfer in Chemical Engineering contains a concise and systematic
exposition of fundamental problems of hydrodynamics, heat and mass transfer, and physicochemical
hydrodynamics, which constitute the theoretical basis of chemical engineering in science. Areas covered include:
fluid flows; processes of chemical engineering; mass and heat transfer in plane channels, tubes and fluid films;
problems of mass and heat transfer; the motion and mass exchange of power-law and viscoplastic fluids through
tubes, channels, and films; and the basic concepts and properties of very specific technological media, namely
foam systems. Topics are arranged in increasing order of difficulty, with each section beginning with a brief
physical and mathematical statement of the problem considered, followed by final results, usually given for the
desired variables in the form of final relationships and tables. Non-Newtonian materials are encountered in virtually
all of the chemical and process industries and a full understanding of their nature and flow characteristics is an
essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge
the gap between much of the highly theoretical and mathematically complex work of the rheologist and the
practical needs of those who have to design and operate plants in which these materials are handled and
processed. At the same time, numerous references are included for the benefit of those who need to delve more
deeply into the subject. The starting point for any work on non-Newtonian fluids is their characterisation over the
range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is
treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements.
Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of
single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in
boundary layers and in simple duct flows, and mixing etc. A n important and novel feature of the book is the
inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a
large selection of problems for the reader to tackle himself. This book provides readers with the most current,
accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in
the chemical and related industries, in addition to a fundamental understanding of these applications based upon
sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition
includes many more examples.

Copyright code: b5d9051b20f1ad5608dc13927120142a