Additive Manufacturing Technologies Rapid Prototyping To Direct Digital Manufacturing

Additive Manufacturing Technologies Rapid Prototyping To Direct Digital Manufacturing | c8d5c0a7b1542fec7195bbb49a34147f

Additive Manufacturing Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics 3D Printing
Materials for Additive Manufacturing Advances in 3D Printing & Additive Manufacturing Technologies
Additive Manufacturing Technologies The Digital Transformation of Logistics
Rapid Prototyping and Engineering Applications Advances on Mechanics, Design Engineering and Manufacturing Technologies of the 35th International MATADOR Conference
Design for 3D Printing
Additive Manufacturing Handbook Additive Manufacturing Technologies
Additive Manufacturing of High-performance Metals and Alloys Additive Manufacturing Handbook
Additive Manufacturing of Metals Additive Manufacturing Technologies
3D Printing and Additive Manufacturing Technologies
Fundamentals of Additive Manufacturing for the Practitioner Additive Manufacturing of Metals: The Technology, Materials, Design and Production
Rapid Prototyping & Manufacturing Selective Laser Sintering Additive Manufacturing Technology
Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing
Rapid Prototyping of Biomaterials Additive Manufacturing Rapid Prototyping and Engineering Applications Additive Manufacturing: Foundation Knowledge For The Beginners
Rapid Manufacturing Rapid Prototyping Rapid Prototyping Additive Manufacturing Additive Manufacturing Technologies from an Optimization Perspective Friction Based Additive Manufacturing Technologies Understanding Additive Manufacturing 3D Printing and Additive Manufacturing How to Make Money with 3D Printing Rapid Manufacturing

Additive Manufacturing

3D Printing and Additive Manufacturing (AM) has revolutionized how prototypes are made and small batch manufacturing carried out. With additive manufacturing, the strategies used to produce a part change a number of important considerations and limitations previously faced by tool designers and engineers. This 5th edition covers the key AM processes, the available models and specifications, and their principles, materials, advantages and disadvantages.

Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics

 Freedoms in material choice based on combinatorial design, different directions of process optimization, and computational tools are a significant advantage of additive manufacturing technology. The combination of additive and information technologies enables rapid prototyping and rapid manufacturing models on the design stage, thereby significantly accelerating the design cycle in mechanical engineering. Modern and high-demand powder bed fusion and directed energy deposition methods allow obtaining functional complex shapes and functionally graded structures. Until now, the experimental parametric analysis remains as the main method during AM optimization. Therefore, an additional goal of this book is to introduce readers to new modeling and material's optimization approaches in the rapidly changing world of additive manufacturing of high-performance metals and alloys.

3D Printing

Fundamentals of Additive Manufacturing for the Practitioner Discover how to shift from traditional to additive manufacturing processes with this core resource from industry leaders Fundamentals of Additive Manufacturing for the Practitioner delivers a vital examination of the methods and techniques needed to transition from traditional to additive manufacturing. The book explains how traditional manufacturing work roles change as various industries move into additive manufacturing and describes the flow of the typical production process in additive manufacturing. Detailed explorations of the processes, inputs, machine and build preparation, post-processing, and best practices are included,
well as real-world examples of the principles discussed within. Every chapter includes a problems and opportunities section that prompts readers to apply the book’s techniques to their own work. Diagrams and tables are distributed liberally throughout the work to present concepts visually, and key options and decisions are highlighted to assist the reader in understanding how additive manufacturing changes traditional workflows. Readers will also benefit from the inclusion of a thorough introduction on how to move into additive manufacturing, including the identification of a manufacturing opportunity and its characteristics. An exploration of how to determine if additive manufacturing is the right solution, with descriptions of the origins of additive manufacturing and the current state of the technology. An examination of the materials used in additive manufacturing, including polymers, composites, metals, plasters, and biomaterials. A discussion of choosing an additive manufacturing technology and process. Perfect for mechanical engineers, manufacturing professionals, technicians, and designers new to additive manufacturing, Fundamentals of Additive Manufacturing for the Practitioner will also earn a place in the libraries of technical, vocational, and continuing education audiences seeking to improve their skills with additive manufacturing workflows.

Materials for Additive Manufacturing

There is a growing need for manufacturing optimization all over the world. The immense market of Additive Manufacturing (AM) technologies dictates a need for a book that will provide knowledge of the various aspects of AM for anyone interested in learning about this fast-growing topic. This book disseminates knowledge of AM amongst scholars at graduate level, post graduate level, doctoral level, as well as industry personnel. The objective is to offer a state-of-the-art book which covers all aspects of AM and incorporates all information regarding trends, historical developments, classifications, materials, tooling, software issues, dynamic design, principles, limitations, and communication interfaces in a one-stop resource. Features: Breaks down systematic coverage of various aspects of AM within four distinct sections. Contains details of various AM techniques based on ASTM guidelines. Discusses many AM applications with suitable illustrations. Includes recent trends in the field of AM. Covers engineering materials utilized as raw materials in AM. Compares AM techniques with different traditional manufacturing methods.

Advances in 3D Printing & Additive Manufacturing Technologies

ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.

Additive Manufacturing Technologies

More quality, more flexibility, and less costs seem to be the key to meeting the demands of the global marketplace. The secret to success in this arena lies in the expert execution of the critical tasks in the product definition stage. Prototyping is an essential part of this stage, yet can be very expensive. It must be planned well and use state-o

The Digital Transformation of Logistics

Additive Manufacturing (AM) is the worldwide used term for layer oriented or generative manufacturing which originally was introduced at the end of the 1980s as Rapid Prototyping. Within the last 20 years it has developed dramatically. Today it is not just a valuable tool for making models and prototypes, but a
manufacturing method for final parts as well as for mold inserts. It spreads throughout all disciplines and branches of industry, from art to medicine and from car manufacturing to aerospace engineering. AM is about to revolutionize the manufacturing technology in general. This book is designed as a supporting material not only for special courses on advanced manufacturing technology, but for updating the content of traditional manufacturing lessons. It also provides basic information to facilitate self studies and is a valuable quick guide to AM.

Rapid Prototyping and Engineering Applications

This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered

Advances on Mechanics, Design Engineering and Manufacturing

In Industry 4.0, industrial productions are adjusted to complete smart automation, which means introducing self-automation methods, self-configuration, self-diagnosis of problems and removal, cognition, and intelligent decision making. This implementation of Industry 4.0 brings about a change in business paradigms and production models, and this will be reflected at all levels of the production process including supply chains and will involve all workers in the production process from managers to cyber-physical systems designers and customers as end-users. The Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing is an essential reference source that explores the development and integration of Industry 4.0 by examining changes and innovations to manufacturing processes as well as its applications in different industrial areas. Featuring coverage on a wide range of topics such as cyber physical systems, integration criteria, and artificial intelligence, this book is ideally designed for mechanical engineers, electrical engineers, manufacturers, supply chain managers, logistics specialists, investors, managers, policymakers, production scientists, researchers, academicians, and students at the postgraduate level.

Proceedings of the 35th International MATADOR Conference

The use of additive manufacturing for the direct production of finished products is becoming increasingly important. The method not only reduces the demands on industrial infrastructure, but also opens up new perspectives in terms of decentralized production and customer inclusive individualized production (customization, cyberproduction). Oriented towards the practitioner, in this book the basics of additive manufacturing are presented and the properties and special aspects of industrially available machines are discussed. From the generation of data to the forming method, the complete process chain is shown in a practical light. In particular, the following additive manufacturing technologies are discussed: - Polymerization (e.g., stereolithography) - Sintering and melting (e.g., laser sintering) - Layer laminate method (e.g., laminated object manufacturing, LOM) - Extrusion (e.g., fused deposition modeling, FDM) - 3D printing Applications for the production of models and prototypes (rapid prototyping), tools, tool inserts, and forms (rapid tooling) as well as end products (rapid manufacturing) are covered in detailed chapters with examples. Questions of efficiency are discussed from a strategic point of view, and also from an operational perspective.

Design for 3D Printing
Additive Manufacturing explains the background theory, working principles, technical specifications, and latest developments in a wide range of additive manufacturing techniques. Topics addressed include treatments of manufactured parts, surface characterization, and the effects of surface treatments on mechanical behavior. Many different perspectives are covered, including design aspects, technologies, materials and sustainability. Experts in both academia and industry contribute to this comprehensive guide, combining theoretical developments with practical improvements from R&D. This unique guide allows readers to compare the characteristics of different processes, understand how they work, and provide parameters for their effective implementation. This book is part of a four-volume set entitled Handbooks in Advanced Manufacturing. Other titles in the set include Advanced Machining and Finishing, Advanced Welding and Deformation, and Sustainable Manufacturing Processes. Provides theory, operational parameters, and latest developments in 20 different additive manufacturing processes. Includes contributions from experts in industry and academia with a wide range of disciplinary backgrounds, providing a comprehensive survey of this diverse and influential subject. Includes case studies of innovative additive manufacturing practices from industry.

Additive Manufacturing

Materials for Additive Manufacturing covers the materials utilized in the additive manufacturing field, including polymers, metals, alloys and ceramic materials. A conceptual overview of the preparation and characterization of the materials and their processing is given, beginning with theoretical aspects that help readers better understand fundamental concepts. Emerging applications in medicine, aerospace, automotive, artwork and rapid manufacturing are also discussed. This book provides a comprehensive overview of materials, along with rapid prototyping technologies. Discusses the preparation and characterization of materials used for additive manufacturing. Provides descriptions of microstructures and properties of the parts produced by additive manufacturing. Includes recent industrial applications of materials processed in additive manufacturing.

The 3D Printing Handbook

This turnkey technology source provides an introduction to rapid prototyping and manufacturing (RP&M) with emphasis on Stereolithography which represents the majority of all rapid prototyping systems currently in place. The content is based on theory, analysis and experiment with extensive test data, including select case studies from the automotive, simultaneous engineering, and medical sectors.

Additive Manufacturing Technologies

Friction additive manufacturing is a term used for friction based solid state welding processes in conjugation with additive manufacturing, to produce components with superior structural and mechanical properties. This is a novel manufacturing technology of developing high structural performance components. It utilizes the principle of layer by layer additive manufacturing and is a major breakthrough in metal additive manufacturing. The book is a compilation of friction based solid state processes and additive manufacturing principles, and will cover the methodological principles, benefits, limitations, and applications of additive manufacturing and friction stir welding processes.

Additive Manufacturing of High-performance Metals and Alloys

This book provides the key fundamental principles, classifications, recent developments, as well as different applications of additive manufacturing technologies. A comprehensive overview of the different classes is given, covering polymer-based, metal-based and ceramic-based systems. Special topics such as bioprinting and 4D printing are also introduced. The authors discuss the technological aspects of additive manufacturing in a very clear and understandable way, delivered with the help of self-illustrating artworks. This book is particularly designed to suit the curriculum requirements of undergraduate and graduate students enrolled in Mechanical Engineering, Material Science, Product
Design and Development, Biomedical Engineering, Automobile and Aerospace Engineering, and other closely related domains. Manufacturing professionals working in similar fields may also wish to read it as a refresher and to catch up on recent advances.

Additive Manufacturing Handbook

This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automobiles. The objective of this book is to help designers, R&D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing.

Additive Manufacturing of Metals

The 3D Printing Handbook provides practical advice on selecting the right technology and how-to design for 3D printing, based upon first-hand experience from the industry's leading experts.

Additive Manufacturing Technologies

Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing, Second Edition, provides a comprehensive review of emerging rapid prototyping technologies, such as bioprinting, for biomedical applications. Rapid prototyping, also known as additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder or liquid precursors. Sections explore a variety of materials, look at applications, and consider the use of rapid prototyping technologies for constructing organs. With its distinguished editor and international team of renowned contributors, this book is a useful, technical resource for scientists and researchers in academia, biomaterials and tissue regeneration. Presents a comprehensive review of established and emerging additive manufacturing technologies (such as bioprinting) for medical applications Contains chapters that explore the additive manufacturing of nanoscale biomaterials for a range of applications, from drug delivery, to organ printing Includes new information on 3D printing on a variety of material classes

Fundamentals of Additive Manufacturing for the Practitioner

Since the dawn of civilization, mankind has been engaged in the conception and manufacture of discrete products to serve the functional needs of local customers and the tools (technology) needed by other craftsmen. In fact, much of the progress in civilization can be attributed to progress in discrete product manufacture. The functionality of a discrete object depends on two entities: form, and material composition. For instance, the aesthetic appearance of a sculpture depends upon its form whereas its durability depends upon the material composition. An ideal manufacturing process is one that is able to automatically generate any form (freeform) in any material. However, unfortunately, most traditional manufacturing processes are severely constrained on all these counts. There are three basic ways of creating form: conservative, subtractive, and additive. In the first approach, we take a material and apply the needed forces to deform it to the required shape, without either adding or removing material, i. e., we conserve material. Many industrial processes such as forging, casting, sheet metal forming and extrusion emulate this approach. A problem with many of these approaches is that they focus on form generation without explicitly providing any means for controlling material composition. In fact, even
form is not created directly. They merely duplicate the external form embedded in external tooling such as dies and molds and the internal form embedded in cores, etc. Till recently, we have had to resort to the ‘subtractive’ approach to create the form of the tooling.

Additive Manufacturing of Metals: The Technology, Materials, Design and Production

This book presents a selection of papers on advanced technologies for 3D printing and additive manufacturing, and demonstrates how these technologies have changed the face of direct, digital technologies for the rapid production of models, prototypes and patterns. Because of their wide range of applications, 3D printing and additive manufacturing technologies have sparked a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across such diverse industries as consumer products, aerospace, medical devices and automotive engineering. This book will help designers, R&D personnel, and practicing engineers grasp the latest developments in the field of 3D Printing and Additive Manufacturing.

Rapid Prototyping & Manufacturing

This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.

Selective Laser Sintering Additive Manufacturing Technology

This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners.

Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing

The field of additive manufacturing has seen explosive growth in recent years due largely in part to renewed interest from the manufacturing sector. Conceptually, additive manufacturing, or industrial 3D printing, is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Today, most engineered devices are 3D printed first to check their shape, size, and functionality before large-scale production. In addition, as the cost of 3D printers has come down significantly, and the printers’ reliability and part quality have improved, schools and universities have been investing in 3D printers to experience, explore, and innovate with these fascinating additive
manufacturing technologies. Additive Manufacturing highlights the latest advancements in 3D printing and additive manufacturing technologies. Focusing on additive manufacturing applications rather than core 3D printing technologies, this book: Introduces various additive manufacturing technologies based on their utilization in different classes of materials Discusses important application areas of additive manufacturing, including medicine, education, and the space industry Explores regulatory challenges associated with the emergence of additive manufacturing as a mature technological platform By showing how 3D printing and additive manufacturing technologies are currently used, Additive Manufacturing not only provides a valuable reference for veteran researchers and those entering this exciting field, but also encourages innovation in future additive manufacturing applications.

Rapid Prototyping of Biomaterials

Latest Edition: 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack). Fourth edition of Rapid Prototyping. Rapid Prototyping (RP) has revolutionized the landscape of how prototypes and products are made and small batch manufacturing carried out. This book gives a comprehensive coverage of RP and rapid tooling processes, data formats and applications. A CD-ROM, included in the book, presents RP and its principles in an interactive way to augment the learning experience. Special features: Most comprehensive coverage of more than 30 RP SystemsUnderstanding of RP through applicationsIn-depth revelation of the basic principles behind major RP techniquesDiscussion of important issues such as STL file problems of RP partsInteractive CD-ROM to demonstrate the major RP techniquesRP company background information and contact addresses

Additive Manufacturing

Rapid Manufacturing is a new area of manufacturing developed from a family of technologies known as Rapid Prototyping. These processes have already had the effect of both improving products and reducing their development time; this in turn resulted in the development of the technology of Rapid Tooling, which implemented Rapid Prototyping techniques to improve its own processes. Rapid Manufacturing has developed as the next stage, in which the need for tooling is eliminated. It has been shown that it is economically feasible to use existing commercial Rapid Prototyping systems to manufacture series parts in quantities of up to 20,000 and customised parts in quantities of hundreds of thousands. This form of manufacturing can be incredibly cost-effective and the process is far more flexible than conventional manufacturing. Rapid Manufacturing: An Industrial Revolution for the Digital Age addresses the academic fundamentals of Rapid Manufacturing as well as focussing on case studies and applications across a wide range of industry sectors. As a technology that allows manufacturers to create products without tools, it enables previously impossible geometries to be made. This book is abundant with images depicting the fantastic array of products that are now being commercially manufactured using these technologies. Includes contributions from leading researchers working at the forefront of industry. Features detailed illustrations throughout. Rapid Manufacturing: An Industrial Revolution for the Digital Age is a groundbreaking text that provides excellent coverage of this fast emerging industry. It will interest manufacturing industry practitioners in research and development, product design and materials science, as well as having a theoretical appeal to researchers and post-graduate students in manufacturing engineering, product design, CAD/CAM and CIFM.

Rapid Prototyping and Engineering Applications

This book is a clear and concise guide to Additive Manufacturing (AM), now a well-established valuable tool for making models and prototypes, and also a manufacturing method for molds and final parts finding applications in industries such as medicine, car manufacturing, and aerospace engineering. The book was designed as a supporting material for special courses on advanced manufacturing technology, and for supplementing the content of traditional manufacturing lessons. This second edition has been updated to account for the recent explosion of availability of small, inexpensive 3D printers for domestic use, as well as new industrial printers for series production that have come onto the market.
Additive Manufacturing: Foundation Knowledge For The Beginners

Selective Laser Sintering Additive Manufacturing Technology is a unique and comprehensive guide to this emerging technology. It covers in detail the equipment, software algorithms and control systems, material preparations and process technology, precision control, simulation analysis, and provides examples of applications of selective laser sintering (SLS). SLS technology is one of the most promising advances in 3D printing due to the high complexity of parts it can form, short manufacturing cycle, low cost, and wide range of materials it is compatible with. Typical examples of SLS technology include SLS manufacturing casting molds, sand molds (core), injection molds with conformal cooling channels, and rapid prototyping of ceramic and plastic functional parts. It is already widely used in aviation, aerospace, medical treatment, machinery, and numerous other industries. Drawing on world-leading research, the authors provide state of the art descriptions of the technologies, tools, and techniques which are helping academics and engineers use SLS ever more effectively and widely. Provides instructions for how to accurately use SLS for forming Analyses the numerical simulation methods for key SLS technologies Addresses the use of SLS for a range of materials, including polymer, ceramic and coated sand powder

Rapid Manufacturing

The use of additive manufacturing for the direct production of finished products is becoming increasingly important. The method not only reduces the demands on industrial infrastructure, but also opens up new perspectives in terms of decentralized production and customer inclusive individualized production (customization, cyberproduction). Oriented towards the practitioner, in this book the basics of additive manufacturing are presented and the properties and special aspects of industrially available machines are discussed. From the generation of data to the forming method, the complete process chain is shown in a practical light. In particular, the following additive manufacturing technologies are discussed: - Polymerization (e.g., stereolithography) - Sintering and melting (e.g., laser sintering) - Layer laminate method (e.g., laminated object manufacturing, LOM) - Extrusion (e.g., fused deposition modeling, FDM) - 3D printing Applications for the production of models and prototypes (rapid prototyping), tools, tool inserts, and forms (rapid tooling) as well as end products (rapid manufacturing) are covered in detailed chapters with examples. Questions of efficiency are discussed from a strategic point of view, and also from an operational perspective.

Rapid Prototyping

This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered

Rapid Prototyping

This book gathers papers presented at the International Joint Conference on Mechanics, Design
Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.

Additive Manufacturing

“This book examines the latest advances in next-generation manufacturing. It explores the basic and applied knowledge of additive manufacturing”--

Additive Manufacturing

Theoretical and practical interests in additive manufacturing (3D printing) are growing rapidly. Engineers and engineering companies now use 3D printing to make prototypes of products before going for full production. In an educational setting faculty, researchers, and students leverage 3D printing to enhance project-related products. Additive Manufacturing Handbook focuses on product design for the defense industry, which affects virtually every other industry. Thus, the handbook provides a wide range of benefits to all segments of business, industry, and government. Manufacturing has undergone a major advancement and technology shift in recent years.

Additive Manufacturing Technologies from an Optimization Perspective

“Over the fast few years 3D printing has revolutionized the way we create things, prototype products and design art. As the technological [sic] grows, more possibilities develop in ways to utilize this innovative technology. Monetize the advantages of the 3D printing technology and you will be well on your way toward leading the next industrial revolution.” --P. [4] of cover.

Friction Based Additive Manufacturing Technologies

France's Le FabShop has extensive experience testing 3D printers and creating digital models for them. From an articulated Makey Robot to a posable elephant model, Samuel N. Bernier and the rest of Le FabShop's team have created some of the most-printed designs in the 3D printing world. This book uses their work to teach you how to get professional results out of a desktop 3D printer without needing to be trained in design. Through a series of tutorials and case studies, this book gives you the techniques to turn a product idea into a 3D model and a prototype. Focusing on free design software and affordable technologies, the exercises in this book are the perfect boost to any beginner looking to start designing for 3D printing. Designing for the tool and finding a good tool to fit the design--these are at the core of the product designer's job, and these are the tools this book will help you master. Foreword by Carl Bass, Autodesk's CEO, a passionate and prolific Maker. In Design For 3D Printing, you'll: Learn the different 3D printing technologies Choose the best desktop 3D printer Discover free 3D modeling software Become familiar with 3D scanning solutions Find out how to go from a bad to a good 3D source file, one that's ready-to-print

Understanding Additive Manufacturing

This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from
rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.

Additive Manufacturing

Presented here are 88 refereed papers given at the 35th MATADOR Conference held at the National University of Taiwan in Taipei, Taiwan in July 2007. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The proceedings of this conference contains original papers contributed by researchers from many countries on different continents. The papers cover the principles, techniques and applications associated with: manufacturing processes; technology; system design and integration; and computer applications and management. The papers in this volume reflect: the importance of manufacturing in international wealth creation; the emerging fields of micro- and nano-manufacture; the increasing trend towards the fabrication of parts using additive processes; the growing demand for precision engineering and part inspection techniques; measurement techniques and equipment.

3D Printing and Additive Manufacturing

Additive manufacturing has matured from rapid prototyping through the now popular and "maker"-oriented 3D printing, recently commercialized and marketed. The terms describing this technology have changed over time, from "rapid prototyping" to "rapid manufacturing" to "additive manufacturing," which reflects largely a focus on technology. This book discusses the uptake, use, and impact of the additive manufacturing and digital fabrication technology. It augments technical and business-oriented trends with those in product design and design studies. It includes a mix of disciplinary and transdisciplinary trends and is rich in case and design material. The chapters cover a range of design-centered views on additive manufacturing that are rarely addressed in the main conferences and publications, which are still mostly, and importantly, concerned with tools, technologies, and technical development. The chapters also reflect dialogues about transdisciplinarity and the inclusion of domains such as business and aesthetics, narrative, and technology critique. This is a great textbook for graduate students of design, engineering, computer science, marketing, and technology and also for those who are not students but are curious about and interested in what 3D printing really can be used for in the near future.

How to Make Money with 3D Printing

The digital transformation is in full swing and fundamentally changes how we live, work, and communicate with each other. From retail to finance, many industries see an inflow of new technologies, disruption through innovative platform business models, and employees struggling to cope with the significant shifts occurring. This Fourth Industrial Revolution is predicted to also transform Logistics and Supply Chain Management, with delivery systems becoming automated, smart networks created everywhere, and data being collected and analyzed universally. The Digital Transformation of
Logistics: Demystifying Impacts of the Fourth Industrial Revolution provides a holistic overview of this vital subject clouded by buzz, hype, and misinformation. The book is divided into three themed-sections: Technologies such as self-driving cars or virtual reality are not only electrifying science fiction lovers anymore, but are also increasingly presented as cure-all remedies to supply chain challenges. In The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution, the authors peel back the layers of excitement that have grown around new technologies such as the Internet of Things (IoT), 3D printing, Robotic Process Automation (RPA), Blockchain or Cloud computing, and show use cases that give a glimpse about the fascinating future we can expect. Platforms that allow businesses to centrally acquire and manage their logistics services disrupt an industry that has been relationship-based for centuries. The authors discuss smart contracts, which are one of the most exciting applications of Blockchain, Software as a Service (SaaS) offerings for freight procurement, where numerous data sources can be integrated and decision-making processes automated, and marine terminal operating systems as an integral node for shipments. In The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution, insights are shared into the cold chain industry where companies respond to increasing quality demands, and how European governments are innovatively responding to challenges of cross-border eCommerce. People are a vital element of the digital transformation and must be on board to drive change. The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution explains how executives can create sustainable impact and how competencies can be managed in the digital age - especially for sales executives who require urgent upskilling to remain relevant. Best practices are shared for organizational culture change, drawing on studies among senior leaders from the US, Singapore, Thailand, and Australia, and for managing strategic alliances with logistics service providers to offset risks and create cross-functional, cross-company transparency. The Digital Transformation of Logistics: Demystifying Impacts of the Fourth Industrial Revolution provides realistic insights, a ready-to-use knowledge base, and a working vocabulary about current activities and emerging trends of the Logistics industry. Intended readers are supply chain professionals working for manufacturing, trading, and freight forwarding companies as well as students and all interested parties.

Rapid Manufacturing

Rapid prototyping is an exciting new technology used to create physical models and functional prototypes directly from CAD models. Rapid tooling concerns the production of tooling using parts manufactured by rapid prototyping. The book describes the characteristics and capabilities of the main known rapid prototyping processes. It covers in detail various commercially available processes such as: Stereolithography (SLA), Selective Laser Sintering (SLS), and others. The text places a strong emphasis on practical applications and contains an abundance of photographs and diagrams to illustrate clearly the principles of the machines and processes involved.