A Novel Three Phase Three Leg AC to AC Converter Using Nine IGBTs

This book presents the latest cutting-edge technology in high-power converters and medium voltage drives, and provides a complete analysis of various converter topologies, modulation techniques, practical drive configurations, and advanced control schemes. Supplemented with more than 250 illustrations, the author illustrates key concepts with simulations and experiments. Practical problems, along with accompanying solutions, are presented to help you tackle real-world issues.

Industrial electronics systems govern so many different functions that vary in complexity—from the operation of relatively simple applications, such as electric motors, to that of more complicated machines and systems, including robots and entire fabrication processes. The Industrial Electronics Handbook, Second Edition combines traditional and new.

This book focuses on soft computing and how it can be applied to solve real-world problems arising in various domains, ranging from medicine and healthcare, to supply chain management, image processing and cryptanalysis. It gathers high-quality papers presented at the International Conference on Soft Computing: Theories and Applications (SoCTA 2019), organized by the National Institute of Technology Patna, India. Offering valuable insights into soft computing for teachers and researchers alike, the book will inspire further research in this dynamic field.

Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book describes various functions that the VSC can perform in electric power systems. Covers a wide range of applications of the VSC in electric power systems— including wind power conversion systems. This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs.

The project we have chosen to implement "Space Vector Modulation" is very important form industrial point of view. It is not uncommon to control the speed of induction motors according to the load demand attached with the motor. There are different techniques to fulfill this demand. Most common techniques are PWM techniques. Every PWM technique has its own advantage and sometimes drawback. So we, the group members, have implemented a control for induction motor...
which can control the speed of motor very effectively and efficiently. SVM is different from other conventional PWM techniques in that it sees the inverter as a single unit and results in high efficiency, high reliability, smoother operation, higher fundamental output voltage. So this technique is preferred over the other techniques due to its desirable features.

This book reviews numerous research papers published in the last fifteen years in the area of current injection based rectifiers. A partial list of coverage includes analysis of various magnetic current injection devices, the third harmonic current injection, injection networks, and optimal current injection. The book will be of interest to professionals involved in design of low-harmonic three-phase rectifiers, as well as students and researchers.

Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters describes the application of model predictive control techniques with modulator and finite control sets to squirrel cage induction motor and in doubly-fed induction generators using field orientation control techniques as both current control and direct power control. Sections discuss induction machines, their key modulation techniques, introduce the utility of model predictive control, review core concepts of vector control, direct torque control, and direct power control alongside novel approaches of NPC. Mathematical modeling of cited systems, MPC theory, their applications, MPC design and simulation in MATLAB are also considered in-depth. The work concludes by addressing implementation considerations, including generator operation under voltage sags or distorted voltage and inverters connected to the grid operating under distorted voltage. Experimental results are presented in full. Adopts model predictive control design for optimized induction machines geared for complex grid dynamics Demonstrates how to simulate model predictive control using MATLAB and Simulink Presents information about hardware implementation to obtain experimental results Covers generator operation under voltage sags or distorted voltage

Control in Power Electronics explores all aspects of the study and use of electronic integrated circuits for the control and conversion of electrical energy. This technology is a critical part of our energy infrastructure, and supports almost all important electrical applications and devices. Improvements in devices and advances in control concepts have led to steady improvements in power electronic applications. This is driving a tremendous expansion of their applications. Control in Power Electronics brings together a team of leading experts as contributors. This is the first book to thoroughly combine control methods and techniques for power electronic systems. The development of new semiconductor power components, new topologies of converters from one side coupled with advances in modern control theory and digital signal processors has made this book possible and presents the applications necessary for modern design engineers. The authors were originally brought together to share research and applications through the international Danfoss Professor Programme at Aalborg University in Denmark. Personal computers would be unwieldy and inefficient without power electronic dc supplies. Portable communication devices and computers would also be impractical. High-performance lighting systems, motor controls, and a wide range of industrial controls depend on power electronics. In the near future we can expect strong growth in automotive applications, dc power supplies for communication systems, portable applications, and high-end converters. We are approaching a time when all electrical energy will be processed and controlled through power electronics somewhere in the path from generation to end use.

The ever-growing shortage of energy resources continues to make the development of renewable energy sources, energy-saving techniques, and power supply quality an increasingly critical issue. To meet the need to develop renewable and energy-saving power sources, green energy source systems require large numbers of converters. New converters, such as the Vienna rectifier and z-source inverters, are designed to improve the power factor and increase power efficiency. Power Electronics: Advanced Conversion Technologies gives those working in power electronics useful and concise information regarding advanced converters. Offering methods for determining accurate solutions in the design of converters for industrial applications, this book details more than 200 topologies concerning advanced converters that the authors themselves have developed. The text analyzes new converter circuits that have not been widely examined, and it covers the rapid advances in the field, presenting ways to solve and correct the historical problems associated with them. The technology of DC/DC conversion is making rapid progress. It is estimated that more than 600 topologies of DC/DC converters exist, and new ones are being created every year. The authors completed the mammoth task of systematically sorting and categorizing the DC/DC converters into six groups and have made major contributions to voltage-lift and super-lift techniques. Detailing the authors’ work, this book investigates topics including traditional AC/DC rectifiers controlled AC/DC rectifiers power factor correction unity power factor techniques pulse-width-modulated DC/AC inverters multilevel DC/AC inverters traditional and improved AC/AC converters converters used in renewable energy source systems With many examples and homework problems to help the reader thoroughly understand design and application of power electronics, this volume can be used both as a textbook for university students studying power electronics and a reference book for practicing engineers.

This text provides an invaluable source of practical guidance on how anyone can find out the type of electrical equipment they have, and how to convert it to run on a single-phase supply. It offers calculations, step-by-step instructions with photographs and diagrams and also advises on which equipment cannot be converted at all.
This thesis proposes new power converter topologies suitable for aircraft systems. It also proposes both AC-DC and DC-DC types of converters for different electrical loads to improve the performance of these systems. To increase fuel efficiency and reduce environmental impacts, less efficient non-electrical aircraft systems are being replaced by electrical systems. However, more electrical systems require more electrical power to be generated in the aircraft. The increased consumption of electrical power in both civil and military aircrafts has necessitated the use of more efficient electrical power conversion technologies. This book presents comprehensive mathematical analysis and the design and digital simulation of the power converters. Subsequently it discusses the construction of the hardware prototypes of each converter and the experimental tests carried out to verify the benefits of the proposed solutions in comparison to the existing solutions.

This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems.

The two major broad applications of electrical energy are information processing and energy processing. Hence, it is no wonder that electric machines have occupied a large and revered space in the field of electrical engineering. Such an important topic requires a careful approach, and Charles A. Gross' Electric Machines offers the most balanced, application-oriented, and modern perspective on electromagnetic machines available. Written in a style that is both accessible and authoritative, this book explores all aspects of electromagnetic-mechanical (EM) machines. Rather than viewing the EM machine in isolation, the author treats the machine as part of an integrated system of source, controller, motor, and load. The discussion progresses systematically through basic machine physics and principles of operation to real-world applications and relevant control issues for each type of machinery presented. Coverage ranges from DC, induction, and synchronous machines to specialized machines such as transformers, translational machines, and microelectromechanical systems (MEMS). Stimulation example applications include electric vehicles, wind energy, and vertical transportation. Numerous example problems illustrate and reinforce the concepts discussed. Along with appendices filled with unit conversions and background material, Electric Machines is a succinct, in-depth, and complete guide to understanding electric machines for novel applications.

This book presents the select proceedings of the International Conference on Automation, Signal Processing, Instrumentation and Control (I-CASIC) 2020. The book mainly focuses on emerging technologies in electrical systems, IoT-based instrumentation, advanced industrial automation, and advanced image and signal processing. It also includes studies on the analysis, design and implementation of instrumentation systems, and high-accuracy and energy-efficient controllers. The contents of this book will be useful for beginners, researchers as well as professionals interested in instrumentation and control, and other allied fields.

For ease of use, this edition has been divided into the following subject sections: general principles; materials and processes; control, power electronics and drives; environment; power generation; transmission and distribution; power systems; sectors of electricity use. New chapters and major revisions include: industrial instrumentation; digital control systems; programmable controllers; electronic power conversion; environmental control; hazardous area technology; electromagnetic compatibility; alternative energy sources; alternating current generators; electromagnetic transients; power system planning; reactive power plant and FACTS controllers; electricity economics and trading; power quality. *An essential source of techniques, data and principles for all practising electrical engineers *Written by an international team of experts from engineering companies and universities *Includes a major new section on control systems, PLCs and microprocessors

This book focuses on soft switching three-phase converters for applications such as renewable energy and distribution power systems, AC power sources, UPS, motor drives, battery chargers, and more. It begins with an introduction to fundamental of soft switching technology for three-phase conversion. The author provides basic knowledge of soft-switching technology to give readers necessary background information for the following subjects. The book goes on to describe applying soft-switching technology to three-phase rectifiers, then three-phase grid inverters. The author provides prototypes and experiments of each. Finally, the book investigates the impact of silicon carbide (SiC) devices on soft-switching three converters, studying the improvement of efficiency and power density by introducing SiC to soft-switching three-phase converters.

Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of inverters and converters for renewable energy systems—including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200
topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters. Resolve Historic Problems in Conversion Technologies Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new series-laddered multilevel inverter—those use few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications. Tap the Knowledge of Pioneers in the Field This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.


The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAES 2014) held at Noorul Islam Centre for Higher Education, Kamaracol, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics in power technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in robust and reliable power electronics technologies, including fault diagnosis and diagnosis technique stability of grid-connected converters and smart control of power electronics in devices, microgrids, and at system levels.

Three-Phase Electrical Power addresses all aspects of three-phase power circuits. The book treats the transmission of electrical power from the common sources where it is generated to locations where it is consumed. At typical facilities where electrical power is used, the book covers the important topics of grounding, currents, power, demand, metering, circuit protection, motors, motor protection, power factor correction, tariffs, electrical drawings, and relays. Included in the text are the necessary methods of computing currents and power in all possible types of circuit applications as those that are balanced, unbalanced, leading, lagging, three-wire, and four-wire. Focusing on electrical gear, programs, and issues related to the generation and use of three-phase electrical power, this contemporary educational guide: Uses simple, straightforward language to explain key concepts and their underlying theory Introduces numerous examples, illustrations, and photographs to aid in comprehension Employs phasor concepts throughout the text to aid in the analysis of three-phase circuits Encourages applied learning by supplying practical problems at the end of each chapter Provides extensive references and a glossary of symbols, acronyms, and equations Three-Phase Electrical Power delivers a much-needed modern-day treatment of three-phase electrical power for electrical engineering students and practitioners alike.

AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Góra. The topologies of the presented matrix-reactance frequency converters are based on a three-phase bipolar buck-boost matrix-reactance chopper with source or load switches.
arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, Three-Phase AC–AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept will also be valuable to power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.

Need to run a three phase motor on single phase power? Why use a rotary converter that is inefficient and noisy? Build your own transformer converter and start heavily loaded motors with ease. Learn how to make this unique 3 phase converter and more! I show how to modify commercial transformers and also how to build your own power transformer. Need a large battery charger? I can show you how to make it. Do you have a small cheap wire feed welder? I show how to make a transformer that can weld at 180 amps. In this, over 100 page 8 by 10 book, I show all of this plus how to hook up capacitors, hook up and modify a start relay, and every detail you will need to know about running three phase motors at home. Filled with clear easy to understand drawings and illustrations. Need to make some extra money? Build converters for others. Originally sold as a DVD on ebay under the name Unique3phase. Over 900 positive feedbacks.

In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.

Three Phase Partitioning: Applications in Separation and Purification of Biological Molecules and Natural Products presents applications in diverse areas of both chemical technology and biotechnology. This book serves as a single resource for learning about both the economical, facile and scalable processes, along with their potential for applications in the separation and purification of materials and compounds across the entire spectra of chemical and biological nature. The book begins by explaining the origins and fundamentals of TPP and continues with chapters on related applications, ranging from the purification of parasite recombinant proteases to oil extraction from oilseeds and oleaginous microbes, and more. Written by researchers who have been pioneers in developing and utilizing three phase partitioning Focuses on applications, with chapters detailing relevance to a wide variety of areas and numerous practical examples Designed to give laboratory workers the information needed to undertake the challenge of designing successful three-phase partitioning protocols

Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (SCR) whereas matrix converters are built using semiconductor bidirectional switches. This text book provides a summary of AC to AC Converter modelling excluding AC controllers. The software Simulink® by Mathworks Inc., USA is used to develop the models of AC to AC Converters presented in this text book. The term model in this text book refers to SIMULINK model. This text book is mostly suitable for researchers and practising professional engineers in the industry working in the area of AC to AC converters. Features Provides a summary of AC to AC Converter modelling excluding AC controllers Includes models for three phase AC to three phase AC matrix converters using direct and indirect space vector modulation algorithm Presents new applications such as single and dual programmable AC to DC rectifier with derivations for output voltage Displays Hardware-in-the Loop simulation of a three phase AC to single phase AC matrix converter Provides models for three phase multilevel matrix converters, Z-source Direct and Quasi Z-source Indirect matrix converters; a model for speed control and brake by plugging of three phase induction motor and separately excited DC motors using matrix converter; a model for a new single phase and three phase sine wave direct AC to AC Converter without a DC link using three winding transformers and that for a square wave AC to square wave AC converter using a DC link; models for variable frequency, variable voltage AC to AC power supply; models for Solid State Transformers using Dual Active Bridge topology and a new direct AC to AC Converter topology; and models for cycloconverters and indirect matrix converters

The introductory chapter to this book is like traveling in a time machine into past, present, and future of electric power conversion. Archeological discoveries are being transformed into the discoveries of the future. The book is an incursion to electric power conversion through electromechanical power conversion, static power conversion, and applications in the field. Each of the above-mentioned sections analyzes the knowledge gained using the experimental results of valuable research projects. Novice readers will learn how energy is converted adequately and adapted to different consumers. Advanced readers will discover different kinds of modern solutions and tendencies in the field of electric power conversion.

FACT 2017 intends to provide a platform for the exchange of ideas amongst researchers, professionals, academicians, corporate & industry professionals, technically sound students and entrepreneurs in various disciplines across the globe to present the state of the art innovations in power and advanced computing technologies and point out the new trends in current research activities and emerging technologies.
This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.

This textbook is designed primarily as an educational guide to those individuals who are interested in understanding and applying three phase electrical power. In many ways this textbook can fairly be considered as contemporary as it focuses on the present day status of three phase electrical power – the gear that is used today, the various programs and the issues that impact the generation and use of three phase electrical power. The theory behind most concepts is explained and practical equations are introduced.

Volume 2 of Advances in Carbon Management Technologies has 21 chapters. It presents the introductory chapter again, for framing the challenges that confront the proposed solutions discussed in this volume. Section 4 presents various ways biomass and biomass wastes can be manipulated to provide a low-carbon footprint of the generation of power, heat and co-products, and of recovery and reuse of biomass wastes for beneficial purposes. Section 5 provides potential carbon management solutions in urban and manufacturing environments. This section also provides state-of-the-art of battery technologies for the transportation sector. The chapters in section 6 deals with electricity and the grid, and how decarbonization can be practiced in the electricity sector. The overall topic of advances in carbon management is too broad to be covered in a book of this size. It was not intended to cover every possible aspect that is relevant to the topic. Attempts were made, however, to highlight the most important issues of decarbonization from technological viewpoints. Over the years carbon intensity of products and processes has decreased, but the proportion of energy derived from fossil fuels has been stubbornly stuck at about 80%. This has occurred despite very rapid development of renewable fuels, because at the same time the use of fossil fuels has also increased. Thus, the challenges are truly daunting. It is hoped that the technology choices provided here will show the myriad ways that solutions will evolve. While policy decisions are the driving forces for technology development, the book was not designed to cover policy solutions.

This book is a technical publication for students, scholars and engineers in electrical engineering, focusing on the pulse-width-modulation (PWM) technologies in power electronics area. Based on an introduction of basic PWM principles this book analyzes three major challenges for PWM on system performance: power losses, voltage/current ripple and electromagnetic interference (EMI) noise, and the lack of utilization of control freedoms in conventional PWM technologies. Then, the model of PWM's impact on system performance is introduced, with the current ripple prediction method for voltage source converter as example. With the prediction model, two major advanced PWM methods are introduced: variable switching frequency PWM and phase-shift PWM, which can reduce the power losses and EMI for the system based on the prediction model. Furthermore, the advanced PWM can be applied in advanced topologies including multilevel converters and paralleled converters. With more control variables in the advanced topologies, performance of PWM can be further improved. Also, for the special problem for common-mode noise, this book introduces modified PWM method for reduction. Especially, the paralleled inverters with advanced PWM can achieve good performance for the common-mode noise reduction. Finally, the implementation of PWM technologies in hardware is introduced in the last part.

Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (SCR) whereas matrix converters are built using semiconductor bidirectional switches. This text book provides a summary of AC to AC Converter modelling excluding AC controllers. The software Simulink® by Mathworks Inc., USA is used to develop the models of AC to AC Converters presented in this text book. The term model in this text book refers to SIMULINK model. This text book is mostly suitable for researchers and practising professional engineers in the industry working in the area of AC to AC converters. Features Provides a summary of AC to AC Converter modelling excluding AC controllers

A comprehensive survey of advanced multilevel converter design, control, operation and grid-connected applications Advanced Multilevel Converters and Applications in Grid Integration presents a comprehensive review of the general principles of advanced multilevel converters, which require fewer components
and provide higher power conversion efficiency and output power quality. The authors— noted experts in the field— explain in detail the operation principles and control strategies and present the mathematical expressions and design procedures of their components. The text examines the advantages and disadvantages compared to the classical multilevel and two level power converters. The authors also include examples of the industrial applications of the advanced multilevel converters and offer thoughtful explanations on their control strategies. Advanced Multilevel Converters and Applications in Grid Integration provides a clear understanding of the gap difference between research conducted and the current industrial needs. This important guide: Puts the focus on the new challenges and topics in related areas such as modulation methods, harmonic analysis, voltage balancing and balanced current injection. Makes a strong link between the fundamental concepts of power converters and advances multilevel converter topologies and examines their control strategies, together with practical engineering considerations. Provides a valid reference for further developments in the multilevel converters design issue. Contains simulations files for further study. Written for university students in electrical engineering, researchers in areas of multilevel converters, high-power converters and engineers and operators in power industry, Advanced Multilevel Converters and Applications in Grid Integration offers a comprehensive review of the core principles of advanced multilevel converters, with contributions from noted experts in the field.

An exciting and mystical middle grade novel based on the movie MARVEL’s Doctor Strange! Prepare to enter the supernatural world of the mystic arts! MARVEL’s Doctor Strange follows the story of the talented neurosurgeon Doctor Stephen Strange who, after a tragic car accident, must put ego aside and learn the secrets of a hidden world of mysticism and alternate dimensions. Based in New York City’s Greenwich Village, Doctor Strange must act as an intermediary between the real world and what lies beyond, utilizing a vast array of metaphysical abilities and artifacts to protect the Marvel Cinematic Universe. Acclaimed actor Benedict Cumberbatch (The Imitation Game, the BBC’s Sherlock) will star as Doctor Stephen Strange. The cast also includes Chiwetel Ejiofor as Karl Mordo, Tilda Swinton as the Ancient One, and Rachel McAdams. The film will be directed by Scott Derrickson (Sinister, The Exorcism of Emily Rose) with Kevin Feige producing. © 2017 MARVEL.

The Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systems—such as neural networks, fuzzy systems, and evolutionary methods—in terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components. Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Power Electronics and Motor Drives facilitates a necessary shift from low-power electronics to the high-power varieties used to control electromechanical systems and other industrial applications. This volume of the handbook: Focuses on special high-power semiconductor devices; Describes various electrical machines and motors, their principles of operation, and their limitations; Covers power conversion and the high-efficiency devices that perform the necessary switchover between AC and DC; Explores very specialized electronic circuits for the efficient control of electric motors; Details other applications of power electronics, aside from electric motors—including lighting, renewable energy conversion, and automotive electronics; Addresses power electronics used in very-high-power electrical systems to transmit energy; Other volumes in the set: Fundamentals of Industrial Electronics Control and Mechatronics Industrial Communication Systems Intelligent Systems.

Polymer-Based Nanocomposites for Energy and Environmental Applications provides a comprehensive and updated review of major innovations in the field of polymer-based nanocomposites for energy and environmental applications. It covers properties and applications, including the synthesis of polymer based nanocomposites from different sources and tactics on the efficacy and major challenges associated with successful scale-up fabrication. The chapters provide cutting-edge, up-to-date research findings on the use of polymer based nanocomposites in energy and environmental applications, while also detailing how to achieve material’s characteristics and significant enhancements in physical, chemical, mechanical and thermal properties. It is an essential reference for future research in polymer based nanocomposites as topics such as sustainable, recyclable and eco-friendly methods for highly innovative and applied materials are current topics of importance. Covers a wide range of research on polymer based nanocomposites Provides updates on the most relevant polymer based nanocomposites and their prodigious potential in the fields of energy and the environment systematic approaches and investigations from the design, synthesis, characterization and applications of polymer based nanocomposites. Provides a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.).

Copyright code: a202a95453b2e8981eddc0f7eb4a3e7